Compound	CDCl ₃ , δ									
	R ² O-C	O-CH ₂ -N	N-CH ₂ -N	N-Me	N-CH ₂ Si	CH ₃ -Si	Si(OR1)			
1a	3.30 s	3.98 s	_	2.43 s	2.20 s		3.57 s			
1b	3.29 s	3.94 s	_	2.42 s	2.18 s		1.23 t, 3.85 q			
1c	1.18 s 3.49 q	3.98 s		2.39 s	2.11 s	0.17 s	1.21 t, 3.80 q			
2a	_ ^	_	2.68 s	2.27 s	2.04 s	-	3.58 s			
2b		_	2.68 s	2.27 s	2.02 s		1.22 t, 3.86 q			
2c	_	_	2.65 s	2.25 s	1.97 s	0.16 s	1.20 t, 3.79 q			

Table 2. ¹H chemical shifts in the NMR spectra of R²OCH₂N(Me)CH₂SiR(OR¹)₂ and CH₂[N(Me)CH₂SiR(OR¹)₂]₂

Experimental

(N-methyl-N-alkoxymethylaminomethyl)dialkoxysylanes (1a-c) and bis[N-methyl-N-(dialkoxysilylmethyl)amino-]methanes (2a-c). A solution of 0.01 M chloromethyl alkyl ether in 20 mL of Et₂0 was slowly added dropwise to a mixture of 0.01 M N-methylaminomethyldiethoxy-R-silane and 0.01 M triethylamine in 50 mL of absolute Et₂O with stirring in a dry argon atmosphere. The reaction mixture was stirred for 2 h at ~20 °C. The precipitate that appeared was filtered off and washed with Et₂O (2×30 mL). The Et₂O was removed from the filtrate and the residue was distilled in vacuo. Yield,

constants and data of elemental analysis of the obtained compounds are given in Table 1.

Bis[N-methyl-N-(triethoxysilylmethyl)amino]methane (2b). A mixture of 2.07 g (0.01 M) N-methylaminomethyltriethoxysilane and 2.69 g (0.01 M) 1b was kept under Ar for 4 h at 50-60 °C. Compound 2b was isolated from the reaction mixture by vacuum distillation (96 %).

References

1. A. Padwa and W. Dent, J. Org. Chem., 1987, 52.

Received August 10, 1994

N-(2-Thenyl)derivatives of aminoalkyltriethoxysilanes,-silatranes and 2,2-dimethyl-1,3-dioxa-6-aza-silacyclooctane

M. G. Voronkov, N. F. Lazareva, G. G. Efremova, and V. P. Baryshok*

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation.

Fax: +7 (395 2) 466 434

The reactions of aminoalkylethoxysilanes and 2,2-dimethyl-1,3-dioxa-6-aza-2-silacyclooctane with 2-(chlormethyl)thiophene and its 5-chloroderivative lead to the corresponding N-(2-thenyl) derivatives. The N-methyl-N-(2-thenyl)aminomethyltriethoxysilane and 5-chlorothyenyl derivative formed are converted by triethanolamine into silatranes.

Key words: aminoalkylethoxysilanes, 2-(chlormethyl)thiophene, 2-(chlormethyl)5-chlorothiophene, N-methyl-N-(2-thenyl)-aminomethyltriethoxysilanes, N-methyl-N-(2-thenyl)aminomethylsilatrane, 2,2-dimethyl-1,3-dioxa-6-aza-2-silacyclooctane.

2-(Chlormethyl)thiophene has been known to react with liquid NH₃ to form a mixture of primary, secondary, and tertiary (2-thenyl)amines.¹

We obtained the corresponding N-(2-thenyl)-derivatives by reacting aminoalkylethoxysilanes and 2,2-dimethyl-

1,3-dioxa-6-aza-2-silacyclooctane with 2-(chloromethyl)thiophene and its 5-chlorine-substituted derivative.

The corresponding silatranes 11, 12 are formed by mixing equimolar amounts of compounds 2, 6 and triethanolamine.

Table 1. Physicochemical properties of silicon-containing thiophenes

10: X = H(9); X = C1

Compound	B.p. /°C (<i>p</i> /Torr)	n_{D}^{20}	Yield (%)	Found (%) Calculated						Empirical formula
				С	Н	N	Si	S	C1	
1	116—118 (1.5)	1.4822	66	<u>52.66</u> 52.70	8.49 8.48	5.60 5.12	10.86 10.27	11.57 11.73		C ₁₂ H ₂₃ NO ₂ SiS
2	117—120 (1.5)	1.4734	65	<u>51.26</u> 51.45	$\frac{8.30}{8.30}$	<u>5.21</u> 4.62	8.80 9.25	10.97 10.57		$C_{13}H_{25}NO_3SiS$
3	148—150 (1)	1.4812	23	<u>52.74</u> 52.96	8.41 8.57	<u>4.84</u> 4.41	9.90 8.85	10.26 10.10		C ₁₄ H ₂₇ NO ₃ SiS
4	167—171 (1.5)	1.4788	41	<u>58.41</u> 58.31	<u>9.61</u> 9.48	3.84 4.25	7.99 8.52	8.60 9.73		C ₁₆ H ₃₁ NO ₄ SiS
5	118—120 (1.5)	1.4922	45	_	_	_	-	10.42 10.41	<u>11.99</u> 11.51	C ₁₂ H ₂₂ CINO ₂ SiS
6	117—120 (1)	1.4852	43		_	<u>4.28</u> 4.14		11.11 9.49	10.55 10.49	C ₁₃ H ₂₄ ClNO ₃ SiS
7	156—159 (1)	1.4908	33	_	_	4.20 3.98		10.11 9.71	$\frac{10.55}{10.07}$	C ₁₄ H ₂₆ ClNO ₃ SiS
8	178—182 (1)	1.4862	68	-	_	_	~	8.60 8.81	9.31 9.74	C ₁₆ H ₃₀ ClNO ₄ SiS
9	134—136 (1.5)	1.5169	23	<u>51.50</u> 51.32	$\frac{7.40}{7.44}$	<u>5.42</u> 5.44	<u>11.38</u> 10.91	13.39 12.46		$C_{11}H_{19}NO_2SiS$
10	156—158 (1.5)	1.5271	31			4.56 4.80	_	9.18 9.62	12.70 12.15	C ₁₁ H ₁₈ ClNO ₂ SiS
11	89—90*	_	83	<u>50.08</u> 49.65	7.20 7.05		8.83 8.93	9.39 10.20		$C_{13}H_{22}N_2O_3SiS$
12	95—97*	_	60	_	_	8.25 8.03	7.93 6.07	9.72 8.05	10.17 10.16	$C_{13}H_{21}N_2O_3SiS$

^{*} M.p.

The physicochemical characteristics of the compounds obtained and the elemental analysis data are given in

Table 1. The structure of the compounds obtained was confirmed by NMR-spectroscopy data (Table 2).

Com-	CDCl ₃ , δ										
pound	CH ₃ -N	N—CH ₂ —Si	О-СН2-С	CH ₃ C	N-CH ₂ -C	CH ₃ Si	(OCH ₂ CH ₂) ₃ N	Thiophene cycle			
1	2.27 s	1.95 s	3.76 q	1.18 t	3.64 s	0.18 s	_	6.86 m, 7.14 m			
2	2.15 s	1.88 s	3.71 q	1.08 t	3.53 s			6.74 m, 7.03 m			
4	2.28 s	2.00 s	3.52 m 3.87 q	1.16 t	3.66 s	0.22 s	_	6.88 m, 7.18 m			
5	2.31 s	1.99 s	3.80 q	1.22 t	3.61 s	0.22 s	_	6.68 m			
6	2.30 s	2.02 s	3.87 q	1.25 t	3.60 s		_	6.67 m			
7		1.60 m 2.63 m 2.70 m	3.80 q	1.23 t	3.84 s	_	_	6.90 m, 7.16 m			
8	2.30 s	2.02 s	3.89 q	1.18 t	3.61 s	0.24 s		6.66 m, 6.69 m			
9	_	_			3.85 s	0.14 s	2.70 t 3.74 t	6.63 m, 6.73 m			
10	_	_			3.79 s	0.14 s	2.76 t 3.75 t	6.90 m, 7.16 m			
11	2.31 s	1.80 s		******	3.78 s		2.76 t 3.75 t	6.90 m, 7.16 m			
12	2.32 s	1.80 s	-		3.70 s	_	2.81 t 3.80 t	6.69 m			

Table 2. Chemical shifts in the ¹H NMR spectra of organiosilicon derivatives of thiophene

Experimental

N-Methyl(2-thenyl)aminomethylalkoxysilanes and 2,2-dimethyl-6-aza-2-silacylooktanes. A mixture of the corresponding silane (0.02 mol) and triethylamine (0.025 mol) was added dropwise with stirring to 2-chloromethylthiophene (0.02 mol) or its 5-chloro derivative. The reaction mixture was heated for 1 h on a boiling water bath and kept for 14-20 h at room temperature. Then the mixture was filtered from the precipitate of triethylamine hydrochloride, which was washed with pentane (2 × 10 mL). The pentane was distilled off, and the residue was distilled in vacuo. The yield and physicochemical characteristics of the obtained compounds are given in Table 1.

1-(2-Thenyl)aminomethylsilatranes. A mixture of N-methyl-(2-thenyl)aminomethyltriethoxysilane (2) (0.01 mol) and triethanolamine (0.01 mol) was stirred until homogenization. The reaction mixture was kept for 1-2 h at 20 °C, then the ethanol that formed was evaporated *in vacuo*. The residue was recrystallized (compound 11 from mixture heptane—benzene, 3:1; compound 12 from benzene).

References

Yasuo Matsuki, Tyo Sano, and Kogyo Kagaku Zasshi, 1960,
 834; Chem. Abstr., 1962, 56, 8664h.

Received August 10, 1994